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Abstract — This paper shows the use of FEM for a second 
order time dependent electromagnetic field problem, around 
grounding systems (GS). Twenty-node isoparametric 
quadratic 3D finite element, three-node quadratic 1D finite 
element and  a spatial transformation of the "infinite space" 
into the finite space are all applied to achieve better accuracy. 
Time integration is conducted with the Newmark algorithm. 
The applied program solution is suitable for any GS and 
isotropic/anisotropic soil properties as well as time-varying 
fault current. 

I. INTRODUCTION 
The primary goal of GS is to ensure the safety of 

personnel and prevent damage of installations. Their 
secondary goal is to provide a common reference voltage 
for all interconnected electrical and electronic systems. The 
program tool that is able to simulate the transient 
performance of grounding systems is fundamental, because 
it enables the optimization of the GS design, as well as the 
minimization of the disturbance level in the protected area. 
For that very reason, the goal of this research is to develop 
the methodology which allows a complete three-
dimensional transient calculation of electromagnetic field, 
including the displacement current. 

So far, three basic concepts have been used to simulate 
the transient performance of grounding arrangements: the 
circuit approach, the transmission line approach, and the 
electromagnetic field approach [1]. In this paper, the 
solution to analyze the transient behavior of grounding 
system is based on the electromagnetic field theory and on 
the implementation of FEM. The validity of the suggested 
method of analysis has been verified by the comparison of 
obtained results with the numerical and experimental 
results found in [7]. 

II. FEM MODEL OF TRANSIENT ELECTROMAGNETIC FIELD 
WITH CONSIDERATION OF DISPLACEMENT CURRENT 

The governing partial differential equation for transient 
problems of GS can be derived from Maxwell’s equations. 
When magnetic vector potential A, electric scalar potential 
ϕ  and displacement current are introduced to the 
conductive domain the following equation is obtained: 

 

2

2

1 1 0
t tt

ϕσ ϕ ε
µ µ

⎛ ⎞∂ ∂ ∂⎛ ⎞∇× ∇× −∇ ∇ + +∇ + +∇ =⎜ ⎟⎜ ⎟∂ ∂∂⎝ ⎠ ⎝ ⎠

A AA A   (1a) 

 

2

2 0
t tt

ϕσ ϕ ε
⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞∇ ⋅ +∇ + +∇ =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂∂⎝ ⎠ ⎝ ⎠⎣ ⎦

A A       (1b) 

The following equation can be written for the non-
conductive domain: 
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Where µ is the permeability, σ the electrical conductivity 
and ε is the permittivity. Equations (1.a) and (1.b) already 
contain the Coulumb's gauge to ensure the unique solution 
to the magnetic vector potential A, which is given in greater 
detail in [2]. Equation (1.b) defines a well-known relation: 
divergence of the total current that occurs in the conductive 
domain is equal to zero. By applying the finite elements 
procedure and weighted residual method [2], the following 
equations for conductive domain are obtained (3a, 3b). For 
the non-conductive domain the equation (4) is given: 
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The described problem is an open boundary problem. 
Therefore, the numerical model includes the spatial 
transformation [3], which divides the total domain of the 
open boundary problem onto a non-transformed inner 
domain and the transformed outer (infinite) domain.  In 
order to get an accurate field calculation, the soil and the air 
in the transformed and non-transformed domain of the 
problem are discretized by 20 nodes second order 3D finite 
elements. The conductors of the grounding grid or rods (in 
the non-transformed domain) are discretized by the 3 nodes 
second order 1D finite elements [6], [8]. The final FEM 
equation is represented by a system of second order 
ordinary differential equations (5), where V (6) represents 
the modified electric scalar potential [2], in order to ensure 
that matrices C and M are symmetrical.  
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The column vector of unknown nodal potentials in (5) is 
{A, V}. Next column vectors are the first and the second 
derivative of nodal potentials and K, C , M are 
corresponding matrices, which are linked with the 
potentials A and V, and the Laplacian operator (K); with the 
induced conducting current (C) and with the displacement 
current (M). Time integration (5) can be conducted with 
different time-step algorithms such as Newmark’s, Crank-
Nicolson’s, Wilson’s and others [8]. With an assumption of 
linear interpolation throughout time [8], and with the use of 
the Newmark algorithm, the following recursive equation 
(7) is obtained from (5): 
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where parameters fM and θ are given by the following 
expressions:  fM=µ/ε and θ=0,5. The recursive equation (7) 
enables the calculation of the potential, in the new time step 
(n+1), depending on the preceding time step (n). 

III. APPLICATION AND RESULTS 

The program solution has been tested on differently GS, 
in order to verify the reliability, which will be presented in 
the full paper. The application of the program solution for 
the case from [7] is shown in the following text. The 
description contains a detailed and extensive analysis of the 
conducted grounding grid impulse characteristics. The 
considered grounding grid is of a rectangular type with 
dimensions 10 m × 10 m. It is made out of round copper 
conductors that are 50 mm2 in cross section. There are four 
meshes in a grid, each measuring 5 m × 5 m, as shown in 
Fig. 1. The grounding grid is buried 0,5 m horizontally 
below the earth surface into a two-layer soil with the upper-
layer resistivity (from earth surface to the depth of 0,6 m) 
of 50 Ω⋅m and the bottom-layer resistivity of 20 Ω⋅m. 

 

 
 

Fig.1. Schematic view of the grounding grid under analysis. 
 

The application of our FEM solution is presented to 
analyze the behaviour of the grounding grid when fed by an 
injected time variable potential function with maximum 
voltage of 14,8 V at the discharge point, and the ratio 
between the nominal time increase and time to half-value 
the impulse voltage front T1/T2 = 8µs/77µs respectively. In 
Fig. 2, the comparison of calculated current variation, 
obtained as a response to the shape of the injected potential 
function, with current variation from [7] is presented. 
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Fig. 2. The transient voltage and currents of the grounding grid. 
 
Fig.3 shows the potential distribution on the earth surface 
above the grounding grid. Note that the result is shown in a 
particular moment of time, 2 µs, after the fault current starts 
to flow throughout the grounding grid.  

 
Fig. 3. Distribution of the electric potentials on earth surface. 

IV. REFERENCES 

[1] L. Grcev and F. Dawalibi, "An electromagnetic model for transients 
in grounding systems," IEEE Transactions on Power Delivery, vol. 5, 
no. 4, pp. 1773-1781, October 1990. 

[2] O. Biro and K. Preis, "On the use of the magnetic vector potential in 
the finite element analysis of the three dimensional eddy current," 
IEEE Transactions on Magnetics, vol. 25, no. 4, pp. 3145-3159, July 
1989. 

[3] A. Stochniol, "A general transformation for open boundary finite 
element method for electromagnetic problems", IEEE Transsaction 
on Magnetics, vol. 28, no. 2, pp. 1679-1681, March 1992. 

[4] B. Nekhoul, C. Guerin, P. Labie, G. Meunier, and R. Feuillet, "A 
Finite element method for calculating the electromagnetic fields 
generated by substation grounding systems," IEEE Transactions on 
Magnetics, vol. 31, no. 3, pp. 2150-2153, May 1995. 

[5]  B. Nekhoul, P. Labie, F. X. Zgainski, and G. Meunier, "Calculating 
the impedance of a grounding system," IEEE Transactions on 
Magnetics, vol. 32, no. 3, pp. 1509-1512, May 1996. 

[6] M. Trlep, A. Hamler, and B. Hribernik, "The analysis of complex 
grounding systems by FEM," IEEE Transactions on Magnetics, vol. 
34, pp. 2521-2524, September 1998. 

[7] Z. Stojković, M.S. Savić, J.M. Nahman, D. Salamon, B. Bukorović, 
"Sensitivity Analysis of Experimentally Determined Grounding Grid 
Impulse Characteristics," IEEE Transactions on Power Delivery, vol. 
13, no. 4, pp. 1136-1141, October 1998.  

[8] I.M. Smith, D. V. Griffiths, " Programming the Finite Element 
Methods," 4th Edition, John Wiley & Sons, Ltd., 2004. 


